Table of Content of this Series =>The Unified Field Theory of Everything - ToC
[Quick overview on SMFT vs Our Universe ==>Chapter 12: The One Assumption of SMFT: Semantic Fields, AI Dreamspace, and the Inevitability of a Physical Universe]
[用 AI 語義空間破譯⌈河圖、洛書⌋本質:5 於 AI 分析問題的設計和應用 - SIDA 框架藍圖]
SIDA(Slot-Internal Deepening Algorithm)
完整框架藍圖(中文版)
附錄 F:Topological Template Classifier 實戰示例
附錄 F:Topological Template Classifier 實戰示例
-
以「工業革命」為案例,示範如何匹配到「五階段需求擴張」拓撲模板(A1–A5)
-
展示不同文化下的相同拓撲映射(西方技術演進 ↔ 東方王朝盛衰循環)
好的,這是你要的附錄 F 草案。我把「Topological Template Classifier」的核心邏輯、A1–A5 模板定義、以及「工業革命」與「東方王朝循環」的對映都放進來,夠實戰、也方便你之後接資料跑模型。
1) 「五階段需求擴張」拓撲模板(A1–A5)
拓撲語義:一個系統在「潛在需求 → 觸發 → 擴張 → 制度化/飽和 → 分歧/再啟動」的可重入拓撲。它不是時間表,而是相位拓撲;可在不同文明、產業上“嵌入對準”。
| 階段 | 拓撲名 | 場徵(訊號) | 典型變量傾向 |
|---|---|---|---|
| A1 | 潛勢聚積(Seeded Latency) | 潛在需求高、供給受限、邊際創新零星 | ΔI↑、S低、J0零星 |
| A2 | 觸發點(Ignition) | 關鍵技術/制度突破,成本拐點出現 | 成本↓、專利/創新密度↑、採納初速↑ |
| A3 | 基礎設施型擴張(Scale-out) | 生產/運輸/金融基建密集投資,外部性放大 | 產出彈性↑、資本形成率↑、網絡度↑ |
| A4 | 制度化與飽和(Institutionalization) | 標準/法規/壟斷/工會成形,增長趨平 | 價差壓縮、集中度↑、波動率↓ |
| A5 | 分歧與再啟動(Bifurcation/Reset) | 新技術/邊陲市場分支、舊秩序僵化誘發重啟 | 新S曲線萌芽、舊曲線報酬遞減 |
變量記號可沿用你的框架:潛在差 ΔI,資源池 S,初級流通 J0 等。
2) Classifier:特徵擷取與判定規則(摘要)
輸入:跨時序語料 + 指標(價量、制度事件、專利/科舉、基建、衝突/罷工等)
核心特徵
-
ΔI proxy:價格/工資剪刀差、城市糧價–工資比、能源單位成本。
-
Adoption kinks:採納曲線(logistic)的一階/二階導數極值。
-
Infra index:鐵路/運河/電網里程、煤鐵產量、保險與票據擴張。
-
Institutional density:法規條目、工會/行會數、標準化事件密度。
-
Concentration & conflict:產業集中度、壟斷案、罷工/騷亂頻次。
-
Narrative shift:語料中框架詞轉向(「進步/效率」→「安全/規範」)。
簡化判定
-
A1:ΔI 高、採納未現 S-curve、創新孤島;
-
A2:成本/效率拐點 + 媒體/檔案出現「新機器/新法」的關鍵詞尖峰;
-
A3:基建/金融中介同步加速(共振)且外部性詞頻上升(「聯通/速度」);
-
A4:成長斜率趨平 + 法規/工會 + 集中度上升 + 風險詞(「事故/壟斷」);
-
A5:新技術簇在邊陲崛起、舊核心增長降噪,敘事兩極化(「顛覆/守成」)。
3) 案例一:工業革命 ↔ A1–A5
| 階段 | 西方技術演進(英國主軸為例) | 代表訊號 |
|---|---|---|
| A1 潛勢聚積 | 18 世紀前期:城市化上升、羊毛—棉布需求偏移、手工/行會供給受限 | 紡織品相對價格↑、行會規制詞頻↑、家庭手工占比高 |
| A2 觸發點 | 飛梭、珍妮紡紗機、水力/馬力工場;瓦特改良蒸汽機(效率拐點) | 能源單位成本↓、產出/工時比↑、專利簇集中在紡織/蒸汽 |
| A3 基建擴張 | 礦—鐵—煤鏈條、機械廠、鐵路/運河網、合股公司與保險擴張 | 鐵/煤產量曲線陡升、里程數↑、資本形成率↑、票據流通↑ |
| A4 制度化/飽和 | 工廠制度成型、童工/勞安法、反托拉斯雛形、標準化量具;企業集中 | 法規條目密度↑、產業 CR4↑、事故/工運詞頻↑、成長斜率放緩 |
| A5 分歧/再啟動 | 電力化/化學工業(第二次工業革命)、美德後發追趕、殖民邊陲市場 | 新 S 曲線(電/化/內燃機)↑;舊鏈條報酬遞減、敘事分歧 |
若拉長到 20 世紀,可見 A5 觸發下一輪 A2:電氣化與大規模生產(福特主義)作為新拓撲的 ignition。
4) 案例二:東方王朝盛衰循環 ↔ A1–A5
| 階段 | 東方王朝循環(概念化) | 代表訊號 |
|---|---|---|
| A1 潛勢聚積 | 末世亂局—治安/糧運/地權失序,秩序需求高 | 粮價波動↑、盜亂紀錄↑、地方檄文/饑饉詞頻↑ |
| A2 觸發點 | 建朝/改制、均田/賦稅改革、軍政一體化(秩序效率拐點) | 詔令密度↑、戶籍/地冊重編、徭役制度重構 |
| A3 基建擴張 | 大運河/屯田/水利、科舉與官僚編制擴張、邊疆封貢體系整合 | 河工/倉儲紀錄↑、科舉錄取↑、人口與糧稅彈性↑ |
| A4 制度化/飽和 | 官僚層肥厚、內卷化、冗員冗費、士紳地權集中、腐敗/禁令增多 | 赦令與禁令↑、田產集中↑、告訐/科場舞弊詞頻↑ |
| A5 分歧/再啟動 | 天災疊加財政失衡、民變邊患、軍鎮化 → 舊序崩解,新政權在邊陲引爆 | 起義/兵變密度↑、邊鎮詞頻↑、稅糧斷供、政令失靈 |
同構對映(直觀)
-
技術—制度觸發(A2):瓦特蒸汽機 vs. 均田/稅制重構 → 效率拐點。
-
基建—編制擴張(A3):鐵路/保險/合股 vs. 運河/科舉/倉儲 → 傳輸/治理容量激增。
-
飽和—僵化(A4):工廠規範/壟斷 vs. 官僚冗贅/地權集中 → 增長斜率趨平。
-
分歧—重啟(A5):電氣化再啟 vs. 起義改朝 → 新 S 曲線的點火。
5) Disambiguation:常見誤判與修正
-
A2 vs. A3:若看到投資暴衝就判 A3 容易誤判;需同時見到系統性網絡外部性(運輸里程+金融中介+專業化產能)才算 A3。
-
A4 vs. 需求周期低谷:短期景氣回落≠A4。A4 必須伴隨制度密度上升 + 集中度上升 + 成長斜率結構性變平。
-
A5 vs. 僅技術分流:只有當「新曲線具自我維持的採納動力」且舊曲線出現報酬遞減,才標記 A5。
6) Classifier 輸出(示例 JSON)
{
"case": "Industrial Revolution (Britain core)",
"window": "1700–1910",
"topology_template": "Five-Phase Demand Expansion (A1–A5)",
"phase_assignments": [
{"phase": "A1", "span": "1700–1740", "confidence": 0.72, "signals": ["ΔI_high_textiles", "guild_regulation_density_up"]},
{"phase": "A2", "span": "1740–1775", "confidence": 0.81, "signals": ["steam_efficiency_kink", "spinning_patent_cluster", "unit_energy_cost_down"]},
{"phase": "A3", "span": "1775–1850", "confidence": 0.88, "signals": ["rail_canal_mileage_up", "capital_formation_up", "iron_coal_output_surge"]},
{"phase": "A4", "span": "1850–1890", "confidence": 0.77, "signals": ["factory_laws_density_up", "industry_CR4_up", "growth_slope_flattening"]},
{"phase": "A5", "span": "1890–1910", "confidence": 0.74, "signals": ["electrification_adoption", "chemicals_s_curve", "legacy_returns_declining"]}
],
"notes": "A5 shows emergence of a new ignition sequence (Second IR), i.e., next-cycle A2."
}
7) 你可以怎麼用
-
單一文明內多產業對準:同年代把紡織、鐵路、保險三條曲線對齊,觀察拓撲是否同拍(共振 → A3 強證)。
-
跨文明對位:把「運河—科舉—倉儲」指標標準化,與「鐵路—公司法—保險」對映,同時跑 A1–A5 打分。
-
敘事/法規語料做相位錨點:把「進步/效率/開放」與「安全/規範/禁令」語義比值視為相位指示燈,常可準確切 A2→A3→A4 的分界。
如果你要,我可以把這套判定規則抽成 YAML/JSON 規格(特徵 → 指標 → 條件 → 門檻),或補一張Mermaid 階段–訊號甘特圖,方便你直接接到 Slot/Template 雙層分類器。需要我加嗎?
太好了—我把 Slot Collapse Detector 的「特徵 → 指標 → 條件 → 門檻」抽成一份可機讀又可讀懂的規格。你可以直接拿去做參數檔(YAML/JSON 都行),也附了極簡 JSON Schema 方便驗證。
YAML 規格(建議作為預設配置)
version: 1.0
detector:
name: SlotCollapseDetector
description: 判定語義 slot 是否已收束(collapse)或陷入強吸引子(Strong Attractor)
slots:
default_window:
min_turns: 6 # C1:資料量足夠
max_window: 50 # 最長觀測窗
features:
# === 原始特徵(從語料/模型直接計算) ===
- id: phase_alignment
desc: slot 內各候選語義向量的相位/方向一致度(0–1)
source: "cosine_mean_pairwise or circular-mean on θ"
- id: slot_symmetry_index
desc: 順/逆、肯/否、正/負等成對維度的平衡度(0 完全失衡;1 完全對稱)
source: "paired-dimension balance over normalized counts"
- id: entropy
desc: 候選語義分佈熵(bits)
source: "Shannon entropy over {intent/topic/template}"
- id: entropy_delta
desc: 近 k 回合熵的下降量(正值=收斂)
source: "rolling diff of entropy"
- id: turn_consistency
desc: 連續回合輸出模板/拓撲的一致率(0–1)
source: "template_id repeat ratio"
- id: polarity_balance
desc: 立場/情緒/價值極性的平衡指標(0–1)
source: "sentiment/stance polarity distribution"
- id: repair_rate
desc: 自我修正/更正頻率(每 10 回合次數)
source: "edit/correction markers"
- id: novelty_rate
desc: 新資訊/新證據引入比率(0–1)
source: "unique facts/URLs/new claims / turn"
- id: loop_score
desc: 模板循環或語義回圈強度(0–1)
source: "n-gram + template cycle detection"
- id: response_latency_z
desc: 反應延遲的標準分(越低=越穩定)
source: "z-scored latency vs user/session baseline"
- id: attractor_lexicon_hit
desc: 強吸引子觸發詞/句式命中率(0–1)
source: "keyword/pattern list match ratio"
- id: contradiction_rate
desc: 內在自相矛盾檢測率(0–1,越低越一致)
source: "entailment/contradiction model"
indicators:
# === 由特徵綜合計分的「指標」 ===
- id: symmetry_ok
formula: "slot_symmetry_index >= θ.symmetry_min"
- id: convergence_score
formula: >
0.35*phase_alignment
+ 0.25*min(1, max(0, entropy_delta / θ.entropy_delta_norm))
+ 0.20*turn_consistency
+ 0.10*(1 - contradiction_rate)
+ 0.10*(1 - response_latency_z_norm)
- id: stability_score
formula: >
0.40*turn_consistency
+ 0.25*(1 - repair_rate_norm)
+ 0.20*(1 - loop_score)
+ 0.15*(1 - contradiction_rate)
- id: novelty_guard
formula: "novelty_rate >= θ.novelty_min"
- id: strong_attractor_score
formula: >
0.45*loop_score
+ 0.25*attractor_lexicon_hit
+ 0.15*(1 - novelty_rate)
+ 0.15*turn_consistency
thresholds:
# === 門檻(可按資料域微調) ===
symmetry_min: 0.55
entropy_delta_norm: 0.8 # 使 entropy_delta 正規化的標度
convergence_pass: 0.68
stability_pass: 0.70
novelty_min: 0.18
strong_attractor_warn: 0.62
strong_attractor_fail: 0.75
latency_z_clip: [-2.5, 2.5]
conditions:
# === 判定步驟 C1–C4 ===
- id: C1_data_sufficiency
rule: "window_turns >= slots.default_window.min_turns"
fail_state: "INSUFFICIENT_DATA"
- id: C2_symmetry_gate
rule: "symmetry_ok == true"
on_fail:
allow_override_if: "convergence_score >= thresholds.convergence_pass + 0.07"
else_state: "ASYMMETRY_BLOCK"
- id: C3_convergence_and_stability
rule_all:
- "convergence_score >= thresholds.convergence_pass"
- "stability_score >= thresholds.stability_pass"
- "novelty_guard == true"
fail_state: "NOT_CONVERGED"
- id: C4_strong_attractor_scan
rule:
- when: "strong_attractor_score >= thresholds.strong_attractor_fail"
state: "STRONG_ATTRACTOR_LOCK"
- when: "strong_attractor_score >= thresholds.strong_attractor_warn"
state: "STRONG_ATTRACTOR_WARN"
- else: "OK"
collapse_mapping:
# === 輸出狀態映射 ===
- when: "C1 && C2 && C3 && C4==OK"
collapse_state: "COLLAPSED"
- when: "C4==STRONG_ATTRACTOR_WARN"
collapse_state: "COLLAPSED_BUT_FRAGILE"
- when: "C4==STRONG_ATTRACTOR_LOCK"
collapse_state: "ATTRACTOR_LOOP"
- when: "C1 fail"
collapse_state: "PENDING"
- when: "C2 fail"
collapse_state: "NEEDS_SYMMETRY"
- when: "C3 fail"
collapse_state: "NOT_CONVERGED"
normalization:
# === 正規化建議 ===
response_latency_z_norm:
clip: "* thresholds.latency_z_clip"
rescale: "map to [0,1] by percentile in-session"
repair_rate_norm:
base: "per 10 turns"
rescale: "min-max in domain corpus"
對應 JSON(同一份配置)
{
"version": "1.0",
"detector": {
"name": "SlotCollapseDetector",
"description": "判定語義 slot 是否已收束(collapse)或陷入強吸引子(Strong Attractor)",
"slots": {
"default_window": { "min_turns": 6, "max_window": 50 }
},
"features": [
{ "id": "phase_alignment", "desc": "slot 內相位一致度(0–1)", "source": "cosine_mean_pairwise or circular-mean on θ" },
{ "id": "slot_symmetry_index", "desc": "成對維度平衡度(0–1)", "source": "paired-dimension balance" },
{ "id": "entropy", "desc": "候選語義分佈熵(bits)", "source": "Shannon entropy" },
{ "id": "entropy_delta", "desc": "近 k 回合熵的下降量", "source": "rolling diff" },
{ "id": "turn_consistency", "desc": "模板一致率(0–1)", "source": "template repeat ratio" },
{ "id": "polarity_balance", "desc": "極性平衡(0–1)", "source": "stance/sentiment distribution" },
{ "id": "repair_rate", "desc": "自我修正頻率/10 turns", "source": "edit markers" },
{ "id": "novelty_rate", "desc": "新資訊比率(0–1)", "source": "unique facts/URLs" },
{ "id": "loop_score", "desc": "循環強度(0–1)", "source": "cycle detection" },
{ "id": "response_latency_z", "desc": "延遲 z 分數", "source": "z-score vs baseline" },
{ "id": "attractor_lexicon_hit", "desc": "吸引子詞命中率(0–1)", "source": "lexicon/pattern matching" },
{ "id": "contradiction_rate", "desc": "自相矛盾率(0–1)", "source": "NLI model" }
],
"indicators": [
{ "id": "symmetry_ok", "formula": "slot_symmetry_index >= θ.symmetry_min" },
{
"id": "convergence_score",
"formula": "0.35*phase_alignment + 0.25*min(1, max(0, entropy_delta / θ.entropy_delta_norm)) + 0.20*turn_consistency + 0.10*(1 - contradiction_rate) + 0.10*(1 - response_latency_z_norm)"
},
{
"id": "stability_score",
"formula": "0.40*turn_consistency + 0.25*(1 - repair_rate_norm) + 0.20*(1 - loop_score) + 0.15*(1 - contradiction_rate)"
},
{ "id": "novelty_guard", "formula": "novelty_rate >= θ.novelty_min" },
{
"id": "strong_attractor_score",
"formula": "0.45*loop_score + 0.25*attractor_lexicon_hit + 0.15*(1 - novelty_rate) + 0.15*turn_consistency"
}
],
"thresholds": {
"symmetry_min": 0.55,
"entropy_delta_norm": 0.8,
"convergence_pass": 0.68,
"stability_pass": 0.70,
"novelty_min": 0.18,
"strong_attractor_warn": 0.62,
"strong_attractor_fail": 0.75,
"latency_z_clip": [-2.5, 2.5]
},
"conditions": [
{ "id": "C1_data_sufficiency", "rule": "window_turns >= slots.default_window.min_turns", "fail_state": "INSUFFICIENT_DATA" },
{
"id": "C2_symmetry_gate",
"rule": "symmetry_ok == true",
"on_fail": { "allow_override_if": "convergence_score >= thresholds.convergence_pass + 0.07", "else_state": "ASYMMETRY_BLOCK" }
},
{
"id": "C3_convergence_and_stability",
"rule_all": [
"convergence_score >= thresholds.convergence_pass",
"stability_score >= thresholds.stability_pass",
"novelty_guard == true"
],
"fail_state": "NOT_CONVERGED"
},
{
"id": "C4_strong_attractor_scan",
"rule": [
{ "when": "strong_attractor_score >= thresholds.strong_attractor_fail", "state": "STRONG_ATTRACTOR_LOCK" },
{ "when": "strong_attractor_score >= thresholds.strong_attractor_warn", "state": "STRONG_ATTRACTOR_WARN" },
{ "else": "OK" }
]
}
],
"collapse_mapping": [
{ "when": "C1 && C2 && C3 && C4==OK", "collapse_state": "COLLAPSED" },
{ "when": "C4==STRONG_ATTRACTOR_WARN", "collapse_state": "COLLAPSED_BUT_FRAGILE" },
{ "when": "C4==STRONG_ATTRACTOR_LOCK", "collapse_state": "ATTRACTOR_LOOP" },
{ "when": "C1 fail", "collapse_state": "PENDING" },
{ "when": "C2 fail", "collapse_state": "NEEDS_SYMMETRY" },
{ "when": "C3 fail", "collapse_state": "NOT_CONVERGED" }
],
"normalization": {
"response_latency_z_norm": { "clip": "* thresholds.latency_z_clip", "rescale": "map to [0,1] by percentile in-session" },
"repair_rate_norm": { "base": "per 10 turns", "rescale": "min-max in domain corpus" }
}
}
}
迷你 JSON Schema(驗證配置檔用)
{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "SlotCollapseDetectorConfig",
"type": "object",
"required": ["version", "detector"],
"properties": {
"version": { "type": "string" },
"detector": {
"type": "object",
"required": ["name", "features", "indicators", "thresholds", "conditions", "collapse_mapping"],
"properties": {
"name": { "type": "string" },
"slots": { "type": "object" },
"features": {
"type": "array",
"items": { "type": "object", "required": ["id"], "properties": {
"id": { "type": "string" },
"desc": { "type": "string" },
"source": { "type": "string" }
} }
},
"indicators": {
"type": "array",
"items": { "type": "object", "required": ["id","formula"], "properties": {
"id": { "type": "string" },
"formula": { "type": "string" }
} }
},
"thresholds": { "type": "object", "additionalProperties": { "type": ["number","array"] } },
"conditions": {
"type": "array",
"items": { "type": "object", "required": ["id"], "properties": {
"id": { "type": "string" },
"rule": { "type": "string" },
"rule_all": { "type": "array", "items": { "type": "string" } },
"fail_state": { "type": "string" },
"on_fail": { "type": "object" },
"rule_any": { "type": "array", "items": { "type": "string" } }
} }
},
"collapse_mapping": {
"type": "array",
"items": { "type": "object", "required": ["when","collapse_state"], "properties": {
"when": { "type": "string" },
"collapse_state": { "type": "string" }
} }
},
"normalization": { "type": "object" }
}
}
}
}
使用小提醒
-
想更嚴格:把
symmetry_min拉高到 0.6–0.65;或把convergence_pass調到 0.72。 -
想更敏捷:放寬
min_turns到 4,並降低stability_pass到 0.65。 -
強吸引子偵測敏感度:提高或降低
strong_attractor_warn/fail即可。
要不要我幫你把這份規格塞進你的現有程式(或做個最小可跑的檢測器)?
© 2025 Danny Yeung. All rights reserved. 版权所有 不得转载
Disclaimer
This book is the product of a collaboration between the author and OpenAI's GPT-5 language model. While every effort has been made to ensure accuracy, clarity, and insight, the content is generated with the assistance of artificial intelligence and may contain factual, interpretive, or mathematical errors. Readers are encouraged to approach the ideas with critical thinking and to consult primary scientific literature where appropriate.
This work is speculative, interdisciplinary, and exploratory in nature. It bridges metaphysics, physics, and organizational theory to propose a novel conceptual framework—not a definitive scientific theory. As such, it invites dialogue, challenge, and refinement.
I am merely a midwife of knowledge.
没有评论:
发表评论